Some exceptional linkages, their continuum limit, and isometric deformations from helicoids to ruled Möbius bands

Eliot Fried

Mechanics and Materials Unit
Okinawa Institute of Science and Technology

Contibutors: Vikash Chaurasia, Martín F. Conde, Johannes Schönke

$57^{\text {th }}$ Meeting of the Society for Natural Philosophy Truesdell Lecture

mechanics materials

C. Truesdell

Rational

 ThermodynamicsSecond Edition

C. Truesdell

Rational Thermodynamics

with an appendix by C.-C. Wang

Second Edition

corrected and enlarged to which are adjoined appendices by
Ray M. Bowen G. Capriz Peter J. Chen Bernard D. Coleman C. M. Dafermos W. A. Day J. L. Ericksen Martin Feinberg Morton E. Gurtin Richard Lavine I-Shit Liu Ingo Müller
E. K. Walsh William O. Williams

Springer-Verlag

 New York Berlin Heidelberg Tokyomechanics" or "material science" in its title, we find a chapter on thermodynamics, but that chapter presents a curious contrast with the same author's pages, earlier in the book, on pure mechanics. There the reader is faced by mappings, fields of vectors and tensors, Jacobians, differential invariants, perhaps even Christoffel symbols and affine connections; of course he is presumed familiar with calculus as calculus has been taught for the last fifty years. He can understand dynamical equations in tensorial form:

$$
\begin{equation*}
\operatorname{div} \mathbf{T}+\rho \mathbf{b}=\rho \ddot{\mathbf{x}} \quad \text { or } \quad T^{t n} \ldots+\rho b^{\lambda}=\rho \ddot{x^{4}} . \tag{1.2}
\end{equation*}
$$

He is informed, in each case, what the dependent and independent variables are, he is presented with explicit differential equations and bound-ary-value problems, he is shown many special solutions in concrete cases and is directed to grand tomes where he can find thousands more such solutions not given in the book he is reading, and often he is told about some major problems still unsolved and is challenged to solve them himself. The same reader of the same book then reaches the chapter on thermodynamics, where he is faced with the "axiom"

$$
\begin{equation*}
T d S \geqq \delta Q . \tag{1.3}
\end{equation*}
$$

He is told that $d S$ is a differential, but not of what variables S is a function; that δQ is a small quantity not generally a differential; he is expected to believe not only that one differential can be bigger than another, but even that a differential can be bigger than something which is not a differential. He is loaded with an arsenal of words like piston, boiler, condenser, heat bath, reservoir, ideal engine, perfect gas, quasi-static, cyclic, nearly in equilibrium, isolated, universe-words indeed familiar in everyday life, doubtless much more familiar than "tangent plane" and "gradient" and "tensor", which he learned to use accurately and fluently in the earlier chapters, but words that never find a place in the mathematical structure at all, words the poor student of science is expected to learn to hurl for the rest of his life in a rhetoric little sharper than a housewife's in the grocery store. The mathematical structure, in turn, is slight. There are no general equations to be solved, no boundary-value or initialvalue problems set, no general theorems characterizing classes of solutions. The examples or exercises require no more than calculating partial derivatives or integrals of given functions or their inverses and plugging numbers into the results. The references cited lead to other books containing just the same material, perhaps otherwise explained and ordered, but no broader or clearer in concept, and equally unmathematical. No problems, in the sense that the word "problem" has in the theories of mechanics or electromagnetism or optics or heat conduction, are solved. Neither are any open problems stated. The reader must presume that thermodynamics is an exhausted as well as exhausting subject, with nothing left to be done.

As if to emphasize the difference between mechanics and thermodynamies, even the notations of calculus change from one to the other. Not only do differentials replace derivatives, but even derivatives look different, e.g.,

$$
\begin{equation*}
\frac{\delta^{r e v} Q}{d V}=T\left(\frac{\partial S}{\partial V}\right)_{P} \tag{1.4}
\end{equation*}
$$

The difference is not merely formal (note the three different d s). It represents a difference of logic. In some books the chapter on thermodynamics contains a laborious geometrical explanation of the partial derivative, although partial derivatives required not even a definition to justify their abundance in the earlier chapters on mechanics. In paraphrasing his old thermodynamics text, after having paraphrased sections from perhaps still older treatises on continuum mechanics, our interdisciplinary com-piler-author has forgotten that thermodynamics books are written for a different class of readers, and he reproduces vague, descriptive, and unmathematical wordplay which he himself would not for a moment tolerate in his own chapter on elasticity.
The difference is that thermodynamies never grew up. While aspects of mechanics were developed, applied, generalized, and recast by nearly every distinguished mathematician from Archimedes to G. D. Birkhoff, the unfortunate who reads about thermodynamics even today is made to follow Kelvin's preference for differentials, which Kelvin himself maintained in mechanics as well but hydrodynamicists and elasticians have long since abandoned, and to suffer over again the insecurity Clausius seems to have felt whenever he used calculus. For example, our poor reader is expected to believe that something different can come out of a line integral if the line is approximated by infinitesimal adiabats and isotherms, in defiance of the fundamental theorem of integral calculus.

In this lecture 1 will show you that classical thermodynamics can be stated precisely and learned, just as classical mechanies is stated precisely and learned. There are problems to be solved in thermodynamics. We can state these problems, and we can solve them in important special cases; more general ones remain to be studied. The range of intended application of classical thermodynamics is to homogeneous systems, namely, bodies that can be described sufficiently by functions of time only. A standard example is furnished by a mixture of fluids in a beaker sufficiently stirred that there are no differences of temperature, concentrations, or other parameters from point to point at any given time. Opening at random a recent and widely used book ${ }^{1}$ on physical chemistry, I found an elegant diagram of just such a beaker, called a "stirred flow reactor", which is sketched in Figure 1. According to the author, "the reactants
${ }^{1}$ Since the example is selected as being typical, not for criticism of any particular author, I do not cite the book quoted.

Figure 1. Stirred flow reactor.
enter the vessel at A, and stirring at $3,000 \mathrm{rpm}$ effects mixing within about a second." He tells us that the product mixture is removed at B at a rate exactly balancing the feed, and that after a steady state is attained, the composition of the mixture in the reactor remains unchanged as long as the composition and rate of supply of reactants are unchanged. The numerical values, irrespective of the size of the vessel and of what be the reactants, seem intended to help us keep our feet firmly on the ground of empirical science. I cannot help wishing to see some of my classically thermodynamic friends try the experiment with asphalt as one ingredient and nitroglycerin as the other. Were some mathematician to dream up this apparatus, his colleagues in the natural sciences would rise with condescending smiles or scathing comments on persons who live in the clouds, but in fact it seems to furnish the standard way to connect classical thermodynamics with the world of experience, although, of course, conditions need not be steady in the theory we shall consider now. This theory describes the same situations, though possibly unsteady, as those for which classical thermodynamics is intended. If the one is applicable, so is the other. All quantities I shall write down will be functions of time, not varying in space, and a dot will denote the time derivative

I shall draw parallels to classical mechanics. In this instance, "classical mechanics" will mean the Newtonian mechanics of finite systems of masspoints, called "bodies".

Any branch of mathematical physics is constructed in terms of:

1. A list of primitive quantities, not defined except by mathematical properties laid down for them.
2. Definitions of other quantities in terms of the primitives.
3. General axioms stated as mathematical relations satisfied by the primitives and the defined quantities.
4. Proved theorems referring to:
a. The theory as a whole, or
b. Mathematically defined special cases.

The axioms are regarded as general principles or physical laws: They refer to all systems covered by the theory. Particular systems may be selected and studied at random, but it is more useful to specify them by constitutive relations intended to represent important classes of systems. The entire class of constitutive relations is delimited by constitutive axioms, which are concrete, mathematical statements in terms of the variables entering the general axioms. The general principles express properties common to all systems, while the constitutive relations formalize diversities among the systems allowed by the general principles. It should be unnecessary to remark that the choice of primitives, definitions, and axioms is not unique, and that any given theory may be constructed in infinitely many different but equivalent ways. (This fact, however, should not be taken as a license, as often it is, especially in thermodynamics, to present a physical theory in a merely suggestive form, with no mathematical structure at all.)

Table 1 contains a possible list of primitives, axioms, and constitutive equations for classical mechanics and classical thermodynamics. The table merely describes the two theories, not pretending to supply a formal axiomatic development of either.
I will now explain the entries. The "classical mechanics" described here is a fairly special one; easily it could be generalized so as to include variable masses, frictional forces, and multiple interactions, but I have kept it special so that every line will be understood without question by anyone who has studied mechanics in any standard book. The system of thermodynamics outlined, on the other hand, is more general than the usual ones for homogeneous processes, and in form it will surely be unfamiliar. This lecture is devoted to presenting it, though not in the order of the entries. To the few mathematical supplements necessary, I will adjoin simple explanations such as are given in a beginning course in mechanics so as to help the student relate the symbols to everyday experience. At the same time, I will recast the mathematical structure into a more elaborate but more familiar one by introducing appropriate definitions and proving some easy theorems.
Classical thermodynamics refers to only one whole body \mathscr{B}, not an infinite system of subbodies, so we need not write the argument \mathscr{B} any more. At each time, the body is assigned a real number called the temperature. This number is a measure of how hot the body is. Instruments for measuring it are called "thermometers" or "thermocouples". Experiments show that whatever such instrument be used, there is a temperature below which no body can be cooled. This least possible temperature depends on the thermometer used but not on the bodies whose temperature it mea-
(1) Background

- Nonorientable hydrocarbon rings: Möbius annulenes
- Underconstrained nonorientable linkages: Möbius kaleidocycles
(2) Isometric deformations from circular helicoids to Möbius bands
(3) Isoenergetic and isometric everting motions of Möbius bands

4 Generalization of the Möbius kaleidocycles
(5) Summary
(6) Outlook

Nonorientable hydrocarbon rings

Tetrahedron Letters No.29, pp. 1923-1928, 1964. Pergamon Press Ltd. Printed in Great Britain.

HÖGEEL MOLECULAR ORBITALS OF MÖBIUS-TIPE COMPOREATIONS OF AHFULERES

E.Hellbronner

Laboratorium fur organische Chemie der Eidg. Technisehen

$$
\begin{aligned}
& \text { Hochsohule, Zariah } \\
& \text { (Heceived } 1 \text { June 1964) }
\end{aligned}
$$

The different conformations of a Tr-eleetron eystem an be apecified by listing tho twist anglos $\omega_{\mu \nu}$ betwes all paira of bonded atomic orbitala (A0s) ϕ_{μ}, ϕ_{ν}. The resonance integral $\beta_{\mu v}$ of a twisted T-bond is given by (1)

$$
\beta_{\mu \nu}=\beta \cos \omega_{\mu \nu}
$$

β being the standerd resonance integral for a pair of pa-
 tron energy has an absolute maximun for the coplanar aystem (all $\omega_{\mu \nu}=0$ or 9). Any conformation vith one or more angles $\omega_{\mu \nu}$ difforent from zoro or Tr would then have a analler T-electron energy, assuing that the interatonic diatances between pairs of bonded 40 s remain constant. Ye shall ehov that, according to Hfickel molecular orbital (HNO) theory this may not necessarily be so.

The higher menbers of the annulenes (CH$)_{n}$ (2) are prequably present in solution in a variety of non-planar conformations. Among these conformations, there are sone where the $9 r$-orbital is twisted into a mbius atrip. Such conformations can be obtained with standard molecular modele (Dreiding or Stuart - Briegleb) without introducing any apparent bond angle or steric repulsion strain when $n>\sim 20$. The topological equivalont of such a Mobius type conformation is shown in fig. 1.

Figure 1

Triply twisted Möbius annulene

ARTICLES

nature
PUBLSHED ONINE 25 MNV 20141 DOE: 10.103a/NCHEM.19S5
chemistry

Design and synthesis of the first triply twisted Möbius annulene

Gaston R. Schaller', Filip Topić ${ }^{2}$, Kari Rissanen ${ }^{2 \star}$, Yoshio Okamoto ${ }^{3}$, Jun Shen ${ }^{4}$ and Rainer Herges ${ }^{1 \star}$
As long as 50 years ago theoretical calculations predicted that Möbius annulenes with only one π surface and one edge would exhibit peculliar clectronic properties and violate the Hǘckel rules. Numerous synthetic attempts notwithstanding,
the first singly twisted Möbius annulene was not prepared until 2003. Here we present a general, rational strategy to synthesize triply or even more highly twisted cyclic π systems. We apply this strategy to the preparation of a triply syisted [24]dehydroannulene, the structure of which was confirmed by X-ray analysis. Our strategy is based on the
twis topological transformation of 'twist' into 'writhe'. The advantage is twofolde the product exhibits a lower degroe of strain and precursors can be designed that inherently include the writhe, which, after cyclization, ends up in
With our strategy, triply twisted systems are easier to prepare than their singly twisted counterparts.
$\bigwedge_{\text {ost objects in our everydyy lives ectibit two sides in and }}^{\text {out. }} \begin{aligned} & \text { out. or front and byck Moblus bands are exceptions. } \\ & \text { Any band with an odd number of twists bas one side }\end{aligned}$ and one edge. Ribbons with an even number of twists (includies and one edge. Ribbons with an even number of twists (including
zero) exhibit two sides. Unfortunately, sidedness is not an intrinsic topological parameter because its definition requires the object to be enbedded in asurrounding space. Orientability sis an intrinsicic property, and therefore is used frequently to describe the topology of
objects drawn onto the surfice can be transformed into its mirror image simply by moving it ower the surface. This seems trivial. but, for
instance, the Fisher formala of ollactic acd drawn onto : Mobius instance, the Fisher formola of o-lactic acdd drawn onto a Möbius
band is transformed into the structure of t -lactic acid by shifiting band is transformed into the structure of t -lactic acid by shifiting
it once aroumd the ribbon. If our universe were non-orientable in It once arousd the fibbon. If our universe wete non-orientable it
would be possible to convert p-hactic into othactic acid by simply moving a sample around in space (see Supplementary Fik 1).
Other examples of non-orientable objects are the Klein bottle, Bols surfise, the Roman surface and the Crosscap (see Supplementary Fig. 2). The pecaliar properties of non-orientable surfices have astracted and inspired mathematicins, as well as artists, musicians and authors. Interess in chemistry started in 1964 when
Edgar Heilbronner predicted that Möbius annulenes, being aroEdgar Heilbronner predicted that Mobius annulenes, being aro-
matic with $4 n$ electrons, would violate the Hückel rulest. The 180° twist induces strain in the π system and reduces π overiap. Heilbronner concluded that therefore only [n] annulenes with a
ring size larger than $n=20$ would be stable. This forethought ring size larger than $n=20$ would be stable. This forethought termatic generation procedure, and by subsequent energy calcutematic generation procecurre, and by subsequent energy cilcu-
lations of several hundred thousand (n]annulene isomers of ring
sizes sizes $n=8-24$, we can prove that (here are numerous Mobius
annulenes (about 509 , of all structures): however, there is no
 Obviously, the energy grin through Mabbius aromatioity is overcom-
pensted by the striun imposed by the twist. Unforturatel), the

 unstable. Terey would immadiately uly low temperatures, to form the more stable Hackel
energy, even and strucutures. The first Mobbius annulene spthesis, therefore, used a
strategy to stablize the strained part of the Mdbius ring by a ssitable srructures. The irsx Modaus annulene spthesis, therefore, used a
strategy to stablize the strained part of the Mdbius ring by a suitable
molocular framework ${ }^{15-1}$. Meanwhile, a number of Mobius-extended porphyrins have been synthesird that have a stability similarty
enhanced by steric constrainst
Results and discussion
Topological design. Given the tremsendous problems in

syathesixing singly twisted Mätius systems, triply twisted synthesixing singly twisted Möbius systems, triphy twisted | annulenes seem to be rather out of reach. On realistic inspection, |
| :--- |
| strain and reduced π overlap loom. Moreoret, a simple $\begin{array}{l}\text { gnthetic }\end{array}$ | andlysis adds further implications to the heap of obstacles. From a paive point of vier one could propose a cylotrimerication of three singly twisted precursors or, alternatively, the cyclization of a triply twisted starting structure (Fig 1a). Howerer, as soon as

one leveres this rather low level of abstraction, and dares to trankslate the rather simple-minded picture intor real chemistry. one gradually reaclizes that the situation is fairly hopeless. How to
stabilize a 180°, or even a 540°, twist in a linear π sytem-by stabilize a 180°, or even a 540°, twist in a linear π system-by
substitution or a molecular rack? Even if one could do so a substitution of a molecular frack? Even if one coald do 80 a
simple cardboard model reveals that a twisted band would never bend Hence, the ends of the bands would not find each onther for
cyclization. Ayyhors, putting aside all the abome concerns, if the cyclization. Anyhows, putting aside all the abone concerns, if the
target structure (against all odds) could form, it would be target structure (again
tremendously straised.
In this quandary, hope comnes from topology. It is an everyday life experience (telephone cord, garden hose) that twisted bands
wind around themselves to release strain. Topolayists all this wind around themselves to release strain. Topologgists call this
phenomenon the projection of 'twist' into 'writhe' (Fizs. 1 b). Whereas a tist $\left(T_{w}\right)$ is straightforward to define (it is jast the
Wum of the difhedral angles of the sum of the dihecdral angles of the vecturs normal to the π
plane $)^{212}$, the topdogkal parameter ' Nrithe' (WV) is less the plane) ind e, the topclogkal parameter 'writhe' (W) is is less obvious,
at teast in it precise mathematical definition. Writhe is defined as at least in its precise mathematical definition. Writhe is defined as
the double Gaussian integral over a closed curve C in three-dimenthe double Gaussian integral wer a cosed
sional (3D) Eudidean space \mathbf{R}^{2} (ref. 24):

$$
w_{\mathrm{r}}=\frac{1}{4 \pi} \iiint_{\mathrm{C}} \frac{\left(\mathrm{dr}_{2} \times \mathrm{dr}_{1}\right) \cdot \mathbf{r}_{12}}{\left|\mathbf{r}_{13}\right|^{3}}
$$

 608

Underconstrained nonorientable linkages

Single degree of freedom everting ring linkages with nonorientable topology

Johannes Schönke ${ }^{2,1}$ and Eliot Fried ${ }^{21}$

Edited by HowesdA. Stone, Prinketoo Urivessity. Prineton, NN, and appron Linkages are assemblies of rigid bodies conneced
They serve as the basis for force-- and movement-managing They serve as the basis for force- and movement-managing arms. Aside from planar mechanisms, like the well-known four.
bar linkage, only a few linkages with a single internal degree of bar linkage, only a few linkeges with a single internal degree of
freedom-meaning that they can change shape in only one way and may thus be easily controiled -have been known to date. Here, we prosent "Mbblus kaleidocycles," a proviously undiscov
cred class of single internal degree of freedom ring linkagis conered class of single internal degree of freedom ring linkages con-
taining nontrivial examples of spatially underconstrained mechanisms. A Möbius kaleidocycle is made from seven or more identical inks joined by revolute hingos. These links dictato a specific twist angle between neighboring hinges, and the hinge orientations
induce a nonorientable topology equivalent to the topology of an-twist Möbius band. Apart from having many technological applications, including perhaps the design of organic ring molecules with peculiar electronic properties, Mobius kaleidocy-
cles raise fundamental questions about geometry, topology, and the limitations of mobility for closed loop linkages.
sotial inkages | single degree of freedom
inkages have been known since antiquity (1, 2). They can be (rotish and the mammalian knec joint (3), in the vertebrate skull
(4), in the raptorial appenclage of the mintis shrimp (5) and in (4), in the raptorial appendages of the mantis shrimp (5), and in
countless gadgets and machines (6). The latter range from simple manual tools (like bolt cutters) to deployable structures (like umbrclas, foldable canuping gear, solar panels for spacecrafti. ind portable archiic.
Designers of deployable structures have considerablo interest in adopting notions derived from rigid origami as described For example, by You (7) or Chen et al. (8). This design princi-
ple tukes advantage of the folding and unfolding of structures ple takes advantage of the folding and unfolding of structures
made from flat rigid boxdies connected by revolute hinges as excmplifitiod by the famous folding of Miura (9). The resulting constructions belong to the general class of mechanisms made
from rigid bodies connected by joints. You and Chen (10) note from rigid bodies connected by joints. You and Chen (10) note
that all such mechanisms, which they call "motion strutures," combine a small set of fundamental building blocks scissorlike ecements, the Sarrus linkage, the Bennett linkage, and the
Bricard linkage. Eact of these linkages has one degree of freebrcard linkage. Each of these linkages has one degree of free-
dom and exept for the first, is overcorstrained in the sense that it can move, although a simple mobility analysis dictates
We present a class of ring linkages (alko known as closed
Wherwis. previously known types. These linkages can bave an unlimited number (greater than of equal to seven) of iddentical rigid bodies
poined by hinges but still hacc only a single degre of joined by hinges but still have only a single degree of freedom;
an examiple is shown in Fig. 1. Except for the one with seven hinges, each of these objects is underoonstrained, meaning that it has fewer degrees of frecdom than a simple mobility analysis would sugqest. Since they are rings and share the topology of
a 3π-twist Mobius band, these linkiges can be called "Mobius

[^0]咕格ycles." They may serve as building blocks of deployable structures and other machines, but beyond that, they have lascinating properties that raise many questions in mechanial enginecring, physics, chemistry, and mathematics. Bclow, we desente
distinct features, and sketch potential applications.

lassical and Möbius Kaleidocycles

Dassical Kaleidocycles. A classical six-hinged kal leidoyycle (K6) is a dosed ring of six identical tetrahedra, the opposing edges of hedral version of a peneral linkage invented by Brician the tri1927 , which is a closed loop kincematic chain consisting of sic links onnected by revolute hinges (and is known as a "oR Bricard K6 gnd a 3D Pre. printed erealization of of a GR Bricard a conkentional single internal degralent to the paper model. A K6 possesses a motion, during which of diffeedont tetrahifedral faces ary per eriodically
 appxications, , fhe single degree of freecosm nafords controtiatitity yses of a K6 are, in, for cxample. A poonen et al. (12) and Fowler
and Guest (13), and Guest (13),
A diassical eip
A cassical eight-hinged kaleidocycle is made like si-hinged
ones but with eight tetrabedra. This object is neverthcless markedly diffferent from its six-hinged counterpart. It has two internal degrees of freedoms: in ary configuration, it can move independent directions as shown in Fig, 2, Lower Significance
Linkages are the basic functional elements of any machine
Known astrabliched linkiges with a singlo degree of tree Known establiched linkages with a single degree of tree
dom, which facilitates control, have so far consisted of six or fewer links. We introduce "Möbius kaleidocydes," a class of single-degree of freedom ring linkeges containing
nontrivial linkages having less mobilly than expected woliul
 identical hinge-joined links and may serve as building blocks in deployable structures, robotics, or chemistry. These linkages are chiral and have a nonorientable topology equivalent
to $3 \pi-$-wist Mobius bands. Other than tecthological promise to 3n-twist Mobius bandk. Other than technological promise,
Mobius kaleidocycles pose a myriad of intriguing questions in mectianical engineering. physics, and various areas of mathe matics, especially topology

The withon dedare no wonfict of imerist.

 Thastide cotanis usporing yformunt

Critical twist angle

- A chain of $N \geq 7$ identical twisted connected by revolute hinges can be closed into a nonorientable linkage only if the twist angle $\theta \in(0, \pi / 2]$ of the links obeys $\theta \geq \theta_{c}(N)>0$.
- Each linkage so obtained is topologically equivalent to a Möbius band with three half twists.
- For $\theta=\theta_{c}(N)$, closing the chain generates $N-7$ self stresses, leaving only one of the $N-6$ internal degrees of freedom expected from the Chebyshev-Grübler-Kutzbach mobility criterion.
- For $N \geq 8$, the linkage with $\theta=\theta_{c}(N)$ thus has "exceptional" mobility.
- For $\theta=\theta_{c}(N)$, an everting motion afforded by the surviving internal degree of freedom.

Click here for visualization.

Limit surface

$57^{\text {th }}$ SNP Meeting \mid Truesdell Lecture

Properties of the limit surface

- Surface is a ruled Möbius band with three half twists and three-fold rotational symmetry.
- Midline is a geodesic and has uniform torsion.
- Rulings are parallel to the unit binormal of the midline.
- Edge is a trefoil knot.

Truesdell's on kinematics

The KINEMATICS

of

VORTICITY

C. TRUESDELL

Graduate Institute for Applied Mathematics
Indiana University

INDIANA UNIVERSITY PRESS

Bloomington - 1954
special cases of certain purely kinematical theorems valid for arbitrary medis. Let no one contend, however, that I have merely derived the old reaults in a new way. Rather, circulation-preserving motions afford but the simplest and most elegant applications of some parts of the general theory, a theory constructed in the hope that it will prove useful in understanding the behavior of complicated media whose useful in understanding the behavior of complicated media whose classical laws of viscosity. All dynamical statements I have relegated to parenthetical sections, appendices, or footnotes, not in a foolish attempt to diminish their physical importance, but rather to let the argument course freely, uninterrupted by merely interpretative remarks, and to leave the propositions free for application to such special dynamical situations as may be of interest either now or in the future-for cannot too strongly urge that a kinematical result is a result valid forever, no matter how time and fashion may change the "laws" of physics.

Questions

- Can the limit surface of the Möbius kaleidocycles be obtained by subjecting a circular helicoid to an isometric, chirality preserving deformation and, if so, is that deformation stable?

- Do circular helicoids admit isometric, chirality preserving deformations to stable Möbius bands with more than three half twists and/or knots?

Kinematics

- Parametrization \hat{x} of a helicoid \mathcal{H} of pitch $p \neq 0$, axis \mathcal{A} of length ℓ, and radius a :

$$
\hat{\boldsymbol{x}}(s, v)=s \boldsymbol{e}_{1}+v\left(\cos \frac{2 \pi s}{p} e_{2}+\sin \frac{2 \pi s}{p} \boldsymbol{e}_{3}\right)
$$

$$
\begin{gathered}
e_{i} \cdot \boldsymbol{e}_{j}=\delta_{i j}, \\
\boldsymbol{e}_{i} \times \boldsymbol{e}_{j}=\epsilon_{i j k} e_{k} .
\end{gathered}
$$

- Parametrization \hat{y} of a ruled Möbius band \mathcal{B} :

$$
\hat{\boldsymbol{y}}(s, v)=\boldsymbol{d}(s)+v \boldsymbol{g}(s)
$$

$$
\begin{gathered}
|\dot{\boldsymbol{d}}|=1, \quad|\boldsymbol{g}|=1 \\
\boldsymbol{d}(0)=\boldsymbol{d}(\ell), \quad \dot{\boldsymbol{d}}(0)=\dot{\boldsymbol{d}}(\ell), \quad \ddot{\boldsymbol{d}}(0)=\ddot{\boldsymbol{d}}(\ell), \quad \dddot{\boldsymbol{d}}(0)=\dddot{\boldsymbol{d}}(\ell), \\
\boldsymbol{g}(0)=-\boldsymbol{g}(\ell) .
\end{gathered}
$$

- Deformation η from \mathcal{H} to B :

$$
\hat{\boldsymbol{y}}(s, v)=\boldsymbol{\eta}(\hat{\boldsymbol{x}}(s, v)), \quad 0 \leq s \leq \ell, \quad|v| \leq a .
$$

Results of requiring that $\boldsymbol{\eta}$ be isometric

- The midline C of B must be a geodesic of B.
- The torsion τ of \mathcal{C} must be constant and is given by the pitch p of \mathcal{H} through

$$
\tau=\frac{2 \pi}{p} .
$$

- The rulings of B must be parallel to the unit binormal b of C.
- Up to a rigid transformation, the parametrization \hat{y} of \mathcal{B} is completely determined by b :

$$
\hat{\boldsymbol{y}}(s, v)=\frac{p}{2 \pi} \int_{0}^{s} \boldsymbol{b}(\zeta) \times \dot{\boldsymbol{b}}(\zeta) \mathrm{d} \zeta+v \boldsymbol{b}(s)
$$

$$
0 \leq s \leq \ell, \quad|v| \leq a .
$$

Enter kinetics: Bending energy

- Suppose that each \mathcal{H} is homogeneous, isotropic, and elastic.
- Since η is isometric, the energy ψ, per unit area, stored in bending \mathcal{H} to \mathcal{B} depends at most on the mean curvature H of \mathcal{B}.
- If ψ is quadratic in H, then, since \mathcal{H} is minimal,

$$
\psi=2 \mu H^{2}, \quad \mu>0 .
$$

- For the above choice of ψ, the total bending energy E of B has the dimensionally reduced form

$$
E=\frac{\alpha \ell^{3}}{8 \pi^{2} \nu^{2}} \int_{0}^{\ell}|\ddot{b}|^{2} \mathrm{~d} s-2 \alpha \pi^{2} \nu^{2}
$$

$$
\begin{gathered}
\alpha=\frac{\mu p}{\pi \ell} \operatorname{arcsinh} \frac{2 \pi a}{p}, \\
\nu=\frac{\ell}{|p|} .
\end{gathered}
$$

- Minimize $F=E / \alpha$ subject to:

$$
|b|=1,
$$

$$
|\dot{b}|=\frac{2 \pi \nu}{\ell}
$$

$$
\int_{0}^{\ell} \boldsymbol{b} \times \dot{\boldsymbol{b}} \mathrm{d} s=0
$$

Solution of the constrained variational problem

- Seek stable solutions starting with $\nu=10^{-2}$, increasing ν by increments of 10^{-2}.
- First stable solution found, for $\nu \approx 1.29$, is identical to the limit surface of the Möbius kaleidocycles.

- Two stable solutions found for $\nu \geq 1.40$.
- Each solution is approximated to machine precision.

$F=E / \alpha$ versus ν for stable solutions

F versus ν for valley points of the lower envelope

Valley points exhibit rotational symmetry

Topological transitions at peak points

Isoenergetic and isometric everting motions of

 stable Möbius bands- Consider a one-parameter $(t \geq 0)$ family of deformations

$$
\hat{\boldsymbol{y}}(s, v, t)=\frac{p}{2 \pi} \int_{0}^{s} \boldsymbol{b}(\zeta, t) \times \boldsymbol{b}_{\zeta}(\zeta, t) \mathrm{d} \zeta+v \boldsymbol{b}(s, t), \quad \begin{gathered}
0 \leq s \leq \ell, \\
|v| \leq a
\end{gathered}
$$

where b satisfies the constraints

$$
|b|=1,
$$

$$
\left|b_{s}\right|=\frac{2 \pi \eta}{\ell}
$$

$$
\int_{0}^{\ell} \boldsymbol{b} \times \boldsymbol{b}_{s} \mathrm{~d} s=\boldsymbol{O}
$$

the antipodal junction conditions

$$
b(0, \cdot)=-b(\ell, \cdot), \quad \dot{b}_{s}(0, \cdot)=-b_{s}(\ell, \cdot),
$$

$$
\dot{b}_{s s}(0, \cdot)=-\boldsymbol{b}_{s s}(\ell, \cdot),
$$

$$
\dot{b}_{s s s}(0, \cdot)=-\boldsymbol{b}_{s s s}(\ell, \cdot),
$$

together with properly defined initial data $b_{0}:=b(\cdot, 0)$.

- By the constraints $|b|=1, b \cdot b_{t}=0$ and, thus, since b, b_{s}, and $b \times b_{s}$ are orthogonal, there exist scalar-valued quantities U and V such that

$$
\boldsymbol{b}_{t}=U \boldsymbol{b}_{s}+V \boldsymbol{b} \times \boldsymbol{b}_{s} .
$$

- Seek solutions of the form

$$
\boldsymbol{b}(s, t)=\boldsymbol{\beta}(s+c t), \quad c=\text { constant } .
$$

- By the antipodal junction conditions, β must be periodic with period

$$
T=\frac{2 \ell}{c} .
$$

- Since b_{s} and $b \times b_{s}$ are orthogonal, U and V must satisfy

$$
U=c \quad \text { and } \quad V=0
$$

- If b_{0} is a minimizer, then $F_{t}=0$.

Underconstrained linkages with exchangeable links

Everting motion of the $N=9$ hinged ABCABCABC linkage.

Summary

- Each \mathcal{H} with $\nu=1.29$ or more turns can sustain at least one isometric, chirality preserving deformation into a stable Möbius band.
- The choice $\nu=1.29$ corresponds to the limit surface of the Möbius kaleidocycles.
- Valley points of the lower envelope of F versus ν yield energetically optimal stable Möbius bands with $n=2 k+1, k=1,2, \ldots$, half twists and n-fold rotational symmetry.
- Stable solutions obtained for choices of ν that do not correspond to valley points do not possess rotational symmetry.
- Topological transitions are possible at the peak points of the lower envelope of F versus ν.
- Stable solutions provide initial data for isoenergetic and isometric everting motions.
- Left- and right-handed energetically optimal solutions can be combined to construct deployable structures.
- Knotted solutions exist but are saddle points of the bending energy.

Deployable structures

Everting motion of a pentafoil Möbius knot ($n=5$ half twists).

Everting motion of a septafoil Möbius knot ($n=7$ half twists).

Outlook

- Use findings to develop guidelines for designing and synthesizing molecular Möbius bands. . .
- Explore the existence of threshold values of ν above which three or more stable solutions exist. . .
- Establish a rigorous basis for the empirical lower bound of F...
- Fabricate underconstrained nonorientable linkages with five or more half twists and/or knots. . .
- Explore whether knotted solutions can be stabilized by incorporating other physical effects...
- Study the quantum mechanical properties of optimal Möbius bands. . .

$$
i \hbar \frac{\partial \Phi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\Delta+H^{2}-K\right) \Phi
$$

Thanks for listening!

Questions?

Amphiphilic bilayers

nature
 COMMUNICATIONS

ARTICLE

Self-assembled Möbius strips with controlled
helicity
Guanghui Ouyang $\oplus^{12,6}$, Lukang Jiili, Yuqian Jiang ${ }^{4}$, Frank Würthner $\oplus^{288} \&$ Minghua Liue ${ }^{1,5 \otimes}$

Abstract

Different from molecular level topology, the development of supramolecular topology has been limited due to a lack of reliable synthetic methods. Here we describe a supramolecular strategy of accessing MBbius strip, a fascinating topological object featured with only a single edge and single side. Through bending and cyclization of twisted nanofibers self-assembled from chiral glutamate amphiphiles, supramolecular nano-toroids with various twist numbers were obtained. Electron microscopic techniques could clearly identify the formation of Möbius strips when twist numbers on the toroidal fibers are odd ores. Spectroscopic and morphological analysis indicates that the helicity of the Möbius strips and nano-toroids stems from the molecular chirality of glutamate molecules. Therefore, M - and P-helical Mobius strips could be formed from L-and D-amphiphiles, respectively. Our experimental results and theoretical simulations may advance the prospect of creating chiral topologically complex

 structures via supramolecular approach.

 Acodanty od Scences
iumheictasacol

Carbon nanobelts

nature synthesis

ARTICLES ntps//delor/ho:01038/244160-022-00075-8

OPEN

Synthesis of a Möbius carbon nanobelt

Yasutomo Segawa ${ }^{123,4 凹}$, Tsugunori Watanabe ${ }^{3}$, Kotono Yamanoue ${ }^{3.5}$, Motonobu Kuwayama ${ }^{3.5}$,

Technologies for the creation of topological carbon nanostructures have greatly advanced symthetic organic chemistry and materials science. Although simple molecular nanocarbons with a belt topology have been constructed, analogous carbon nanobelts with a twist-more specifically, Möbius carbon nanobelts (MCNBs)-have not yet been synthesized owing to their high intrinsic strain. Here we report the synthesis, isolation and characterization of a MCNB. Caluulations of strain energies
suggest that large MCNBs are synthetically accessible. Designing a macrocyclic precursor with an odd number of repeat units suggest that large MCNBs are synthetically accessible. Designing a macrocyclic precursor with an odd number of repeat unit which yielded ($\mathbf{2 5 , 2 5}$)MCNB over 14 steps. NMR spectroscopy and theoretical calculations reveal that the twist moiety of the Mobbius band moves quickly around the MCNB molecule in in solution. The topal ogical chirality that originates from the Möblius
structure was confirmed experimentally using chiral HPLC separation and circular dichroism spectroscopy.

$\bigodot_{\mathrm{Fo}}^{\mathrm{rg}}$
rganic chemists have striven to realize a wide variety of
structural f fatures on the molecular scale in nanocarbons.
For example nancontions with
 drical or other exotic structures are ussually obtained as mixtures on applying a high energy to the appropriate carbon sources ${ }^{-1}$ - In this context, molecular napocarbon science, with which such sub-
structures are created in 2 precisely controlled fashion, has attracted structures are created in 2 precisely controlled fashion, has attracted
substantial attention, given that this approach is fundamentally y able subsantial attention, given that this approach is fundamentalilyable
to circumvent the problem of the formation of such manocarbon mixtures.
The histo
The history of the development of molecular namocarbon science was first proposed in the 19305, is a ring-shaped molecular nanocarbon that tepresents a partial structure of carbon nanotubes Altboagh cycloparaphenylenes were initially difficult to synthesize
due to their high intringicstrain duc to their high intrinssc strain energies, several synthetic meth-
ods, such as those reported since 2008 by Jasti, lami and Yamago ods, such as those reported since 2008 by lasti, ltami and Yamago nanocarbons that chibit non-trivial topologies, sach as cages
catenaty catenanes and knot ${ }^{\text {sind }}$. The next breakthrough in this rescarch field was the synthesis of a carbon nanobelt (CNB) achievect by our
group in 2017°. The fully fused, belt-shaped topology of CNBs cregroup in 200 -. The fulify fused, felt-shaped topology or CNBs creSince then, the synthetic chemistry of CNB s and related belt-shaped arenes has been intensively investigated worldwide in the context of
the bottom-up construction of carbon nanotube substructures the woll as in-up the creation of new functional molecular nanocarbon Haterials
The CNB structural feature of irreducible inner and outer faces can be extended to aromatic molecules with the topology of a
Möbeius strip, which is the simplest ecample of a noo-orientable surface (FFi, 1a). Möbius- ype molecules are found in nature) and have been of interest in synthetic organic chemistry, as demonstrated by
the successful preparation of a non-coniupated Môbius-1tpe doublethe successful preparation of a non-conjuggted Möbius--tppe double-
stranded molecule by Walba et al. in 1982 (Fil. 1 l , left)" Aromatic stranded molecule by Walba et al. in 1982 (Fig, 1 b , leff) ${ }^{4}$, Aromatic
single-stranded molecules with Mosbius aromaticity were realized by Herges and co-workers in 20033, and Mobius aromaticity was
further investigated by Grazyyiski and co-workers" and Osuka an
 topology still remain limited due to the difficulties associated with their synthesis As shown in Figg, it, saturated linkers (-CH2O-
or chalcogen atom linkers ($-S-$) are necessary to or chakcogen atom linkers (-S-) are necessary to reduce the strain
caused by the Moblus topology (Fig, 1b, centre and right)
ws. Even though Mobius-type CNBs have been theoretically proposed since the $1990 \mathrm{~s}^{*}$ ". , a syynthetic methodology to introduce Möbius topol. ogy to fully fused and fully conjuggated all-spic cabbon struuctures stil
remains to be dexeped in molecular nanocarbon science.

Results and discussion
Here we report the synthesis, isolation and optical analysis of a
Mobsus carbon nanobelt (MCNB), that is, fully fused CNB with Mobidus carbon nanobelt (MCNB), that is, a fully fused CNB with a
twist. The key to the synthesis of such MCNB is a modification of twist. The key to the synthesis of such MCNBs is a modification of
our previously reported synthetic strategy far CNBs our previousy reported synthetic strategy for CNB s, As shown in
Fig. $1 \mathrm{c}(\mathrm{n}, \mathrm{n}) \mathrm{CNB}(n=6,8$ and 12 , where (n, n) is the chiral index of
the corresponding carbon nanotubes) were the corresponding carbon nanotubes) were synthesizxd via a reduc
tive homocoupling reaction using cyclic molecules that consist tive homocoupling reaction using cyclic molecules that consisted of dibromoparaphenylene and cis-ethenylene precursors ${ }^{1 \times N}$. The
important feature of this method is that a CNB can be generated when the number of repeat units is even, whereas an MCNB can be obbained wheen the number is odd. This is a simple bat powerful
method for the synthesis of complex Móbius topology from highly method for the synthesis of a complex Möbius topology from highly
symmetric precyursors symmetric precursors.
Strain energy calculation. The target size of the MCNB was deter mined using density functional theory (DFT) calculations. W
found that MCNBs have a higher strain energy than CNB of the found that MCNBs have a higher strain energy than CNBs of the
same size (for details, see Supplementary Fig. 1), and that the strain of the MCNBs is mainly induced during the final bond-formation step. Figure $2 a, b$ shoms the hypothetical homodesmotic reaction using (n, n) MCNBs, ($n, n)$ CNBs and their corresponding precursors
(pre((n, n) MCNBs and prof $n, n)$ CNBs), based on which the strain (pre($n, n) \mathrm{MCNB}$ and pro $(n, n) \mathrm{CNB}$), based on which the strail
induced in the final bond-formation step ($\Delta H_{\text {we }}$ (lical mol -1$)$ wa etimated. Cis-stilbere and phenanthrene were used as reference

[^0]: wo.95 | mas | Jaruary 2,2019 | vol. 116 | eo. 1

