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Background

Nonorientable hydrocarbon rings
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Background

Triply twisted Möbius annulene

57th SNP Meeting |Truesdell Lecture 6 / 30



Background

Underconstrained nonorientable linkages
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Background

Critical twist angle

A chain of N ≥ 7 identical twisted connected by revolute hinges can be
closed into a nonorientable linkage only if the twist angle θ ∈ (0, π/2] of
the links obeys θ ≥ θc(N) > 0.

Each linkage so obtained is topologically equivalent to a Möbius band
with three half twists.

For θ = θc(N), closing the chain generates N − 7 self stresses, leaving
only one of the N − 6 internal degrees of freedom expected from the
Chebyshev–Grübler–Kutzbach mobility criterion.

For N ≥ 8, the linkage with θ = θc(N) thus has “exceptional” mobility.

For θ = θc(N), an everting motion afforded by the surviving internal
degree of freedom.

Click here for visualization.
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Background

Limit surface
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Background

Properties of the limit surface

Surface is a ruled Möbius band with three half
twists and three-fold rotational symmetry.

Midline is a geodesic and has uniform torsion.

Rulings are parallel to the unit binormal of the
midline.

Edge is a trefoil knot.
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Aside

Truesdell’s on kinematics

57th SNP Meeting |Truesdell Lecture 11 / 30



Questions

Questions

Can the limit surface of the Möbius kaleidocycles be obtained by sub-
jecting a circular helicoid to an isometric, chirality preserving deformation
and, if so, is that deformation stable?

Do circular helicoids admit isometric, chirality preserving deformations to
stable Möbius bands with more than three half twists and/or knots?
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Isometric deformations from circular helicoids to Möbius bands

Kinematics

Parametrization x̂ of a helicoid H of pitch p ̸= 0, axis A of length ℓ, and
radius a:

x̂(s, υ) = se1 + υ
(
cos

2πs

p
e2 + sin

2πs

p
e3

)
,

ei · ej = δij ,
ei × ej = ϵijkek.

Parametrization ŷ of a ruled Möbius band B:

ŷ(s, υ) = d(s) + υg(s),

|ḋ| = 1, |g| = 1,

d(0) = d(ℓ), ḋ(0) = ḋ(ℓ), d̈(0) = d̈(ℓ),
...
d (0) =

...
d (ℓ),

g(0) = −g(ℓ).
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Isometric deformations from circular helicoids to Möbius bands

Deformation η from H to B:

ŷ(s, υ) = η(x̂(s, υ)), 0 ≤ s ≤ ℓ, |υ| ≤ a.
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Isometric deformations from circular helicoids to Möbius bands

Results of requiring that η be isometric

The midline C of B must be a geodesic of B.

The torsion τ of C must be constant and is given by the pitch p of H
through

τ =
2π

p
.

The rulings of B must be parallel to the unit binormal b of C.

Up to a rigid transformation, the parametrization ŷ of B is completely
determined by b:

ŷ(s, υ) =
p

2π

∫ s

0
b(ζ)× ḃ(ζ) dζ + υb(s), 0 ≤ s ≤ ℓ, |υ| ≤ a.
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Isometric deformations from circular helicoids to Möbius bands

Enter kinetics: Bending energy

Suppose that each H is homogeneous, isotropic, and elastic.

Since η is isometric, the energy ψ, per unit area, stored in bending H to
B depends at most on the mean curvature H of B.
If ψ is quadratic in H, then, since H is minimal,

ψ = 2µH2, µ > 0.

For the above choice of ψ, the total bending energy E of B has the
dimensionally reduced form

E =
αℓ3

8π2ν2

∫ ℓ

0
|b̈|2 ds− 2απ2ν2,

α =
µp

πℓ
arcsinh

2πa

p
,

ν =
ℓ

|p|
.

Minimize F = E/α subject to:

|b| = 1, |ḃ| = 2πν

ℓ
,

∫ ℓ

0
b× ḃ ds = 0 .
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Isometric deformations from circular helicoids to Möbius bands

Solution of the constrained variational problem
Seek stable solutions starting with ν = 10−2, increasing ν by increments
of 10−2.

First stable solution found, for ν ≈ 1.29, is identical to the limit surface
of the Möbius kaleidocycles.

Two stable solutions found for ν ≥ 1.40.

Each solution is approximated to machine precision.

57th SNP Meeting |Truesdell Lecture 17 / 30



Isometric deformations from circular helicoids to Möbius bands

F = E/α versus ν for stable solutions
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Isometric deformations from circular helicoids to Möbius bands

F versus ν for valley points of the lower envelope
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Isometric deformations from circular helicoids to Möbius bands

Valley points exhibit rotational symmetry
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Isometric deformations from circular helicoids to Möbius bands

Topological transitions at peak points
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Isoenergetic and isometric everting motions of Möbius bands

Isoenergetic and isometric everting motions of
stable Möbius bands

Consider a one-parameter (t ≥ 0) family of deformations

ŷ(s, υ, t) =
p

2π

∫ s

0
b(ζ, t)× bζ(ζ, t) dζ + υb(s, t),

0 ≤ s ≤ ℓ,

|υ| ≤ a,

where b satisfies the constraints

|b| = 1, |bs| =
2πν

ℓ
,

∫ ℓ

0
b× bs ds = 0 ,

the antipodal junction conditions

b(0, ·) = −b(ℓ, ·), ḃs(0, ·) = −bs(ℓ, ·),

ḃss(0, ·) = −bss(ℓ, ·), ḃsss(0, ·) = −bsss(ℓ, ·),

together with properly defined initial data b0 := b(·, 0).
57th SNP Meeting |Truesdell Lecture 22 / 30



Isoenergetic and isometric everting motions of Möbius bands

By the constraints |b| = 1, b · bt = 0 and, thus, since b, bs, and b × bs
are orthogonal, there exist scalar-valued quantities U and V such that

bt = Ubs + V b× bs.

Seek solutions of the form

b(s, t) = β(s+ ct), c = constant.

By the antipodal junction conditions, β must be periodic with period

T =
2ℓ

c
.

Since bs and b× bs are orthogonal, U and V must satisfy

U = c and V = 0.

If b0 is a minimizer, then Ft = 0.

Click here for visualization.
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Generalization of the Möbius kaleidocycles

Underconstrained linkages with exchangeable links
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Generalization of the Möbius kaleidocycles

Everting motion of the N = 9 hinged ABCABCABC linkage.
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Summary

Summary

Each H with ν = 1.29 or more turns can sustain at least one isometric, chirality
preserving deformation into a stable Möbius band.

The choice ν = 1.29 corresponds to the limit surface of the Möbius kaleidocycles.

Valley points of the lower envelope of F versus ν yield energetically optimal
stable Möbius bands with n = 2k + 1, k = 1, 2, . . . , half twists and n-fold
rotational symmetry.

Stable solutions obtained for choices of ν that do not correspond to valley points
do not possess rotational symmetry.

Topological transitions are possible at the peak points of the lower envelope of
F versus ν.

Stable solutions provide initial data for isoenergetic and isometric everting mo-
tions.

Left- and right-handed energetically optimal solutions can be combined to con-
struct deployable structures.

Knotted solutions exist but are saddle points of the bending energy.
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Summary

Deployable structures
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Summary

Everting motion of a pentafoil Möbius knot (n = 5 half twists).
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Summary

Everting motion of a septafoil Möbius knot (n = 7 half twists).
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Outlook

Outlook

Use findings to develop guidelines for designing and synthesizing molecular
Möbius bands. . .

Explore the existence of threshold values of ν above which three or more
stable solutions exist. . .

Establish a rigorous basis for the empirical lower bound of F . . .

Fabricate underconstrained nonorientable linkages with five or more half
twists and/or knots. . .

Explore whether knotted solutions can be stabilized by incorporating other
physical effects. . .

Study the quantum mechanical properties of optimal Möbius bands. . .

iℏ
∂Φ

∂t
= − ℏ2

2m
(∆ +H2 −K)Φ

Thanks for listening! Questions?
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Amphiphilic bilayers
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Carbon nanobelts
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